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Introduction
Acute kidney injury (AKI), formerly known as “acute renal failure,” 
has been traditionally described as a rapid (ranging from hours to 
weeks, to less than 3 months) decrease in kidney function as mea-
sured by increases in serum creatinine. The Acute Kidney Injury 
Network (AKIN) defined it more precisely as “An abrupt (within 
48 hours) reduction in kidney function,” and offered specific lab-
oratory and clinical values to guide diagnosis (1). The incidence of 
AKI in hospitalized patients has generally been reported to be in 
the 2%–7% range, with an incidence of 5% to greater than 10% in 
the ICU population (2, 3), often in the context of multiorgan dis-
ease and sepsis, and is steadily increasing overall. Incidence rates 
are even higher when the AKIN definition is used (4). The inci-
dence of AKI has grown steadily in many demographic groups, 
and the yearly community incidence of AKI was estimated to be 
550 per 100,000 individuals in 2003 (5), higher than the yearly 
incidence of stroke (6). Despite advances in preventive strategies 
and support measures, AKI continues to be associated with high 
morbidity and mortality, particularly in those admitted to the 
ICU, where in-hospital mortality rates may exceed 50%. In addi-
tion to mortality rates — generally reported to be in the 30%–70% 
range — there are chronic consequences even if the patients sur-
vive their acute illness, with a high risk of developing or exacerbat-
ing chronic kidney disease (CKD) and hastened development of 
end-stage renal disease (ESRD) (7–9).

Renal ischemia/reperfusion injury (IRI), a common cause of 
AKI (10–12), results from a generalized or localized impairment 
of oxygen and nutrient delivery to, and waste product removal 
from, cells of the kidney (13). There is mismatch of local tissue 
oxygen supply and demand and accumulation of waste products 
of metabolism. As a result of this imbalance, the tubular epithelial 
cells undergo injury and, if it is severe, death by apoptosis and 

necrosis (acute tubular necrosis [ATN]), with organ functional 
impairment of water and electrolyte homeostasis and reduced 
excretion of waste products of metabolism. There are many 
pathophysiological states and medications that can contribute 
to generalized or localized ischemia (Figure 1).

In this review, we summarize the important components of the 
cellular pathophysiology in AKI associated with ischemia. We also 
indicate what is known about the repair process and how this pro-
cess can be maladaptive, leading to fibrosis and CKD.

Endothelium and vascular components of injury
The endothelial and smooth muscle cells of the microcirculation 
play critical roles in the pathophysiology of AKI. While an overall 
decrease in renal blood flow (RBF) of approximately 40%–50% has 
been observed in poorly functioning kidney transplant allografts 
(14), in many cases in animals and humans a decrease in total RBF 
alone cannot entirely account for the reduction in glomerular fil-
tration rate during an episode of AKI (15, 16). Of greater impor-
tance are the regional alterations in RBF that occur during AKI 
(13). Blood flow to the outer medulla is reduced disproportionately  
to the reduction in total kidney perfusion in animal models of 
AKI (17, 18) and likely in humans following ischemic injury to the 
kidney. Endothelial cells are important determinants of vascular 
tone, leukocyte function, and smooth muscle responsiveness (19). 
The endothelium is injured, and small arterioles in postischemic 
kidney vasoconstrict more than do vessels from normal kidney in 
response to increased tissue levels of endothelin-1, angiotensin II, 
thromboxane A2, prostaglandin H2, leukotrienes C4 and D4, and 
adenosine as well as sympathetic nerve stimulation (20–23). There 
is also decreased vasodilatation in response to acetylcholine, brady-
kinin, and nitric oxide (24, 25). Vasoconstriction is amplified due, 
in part, to reduced production of nitric oxide and other vasodila-
tory substances (25) by the damaged endothelial cell. These effects 
on the arterioles are augmented by vasoactive cytokines including 
TNF-α, IL-1β, IL-6, IL-12, IL-15, IL-18, IL-32, and endothelin, gen-
erated as a result of the enhanced leukocyte-endothelial adhesion 
and leukocyte activation that are characteristic of ischemic injury 
(26). Enhanced vasoconstriction together with small vessel occlu-
sion due to endothelial-leukocyte interactions and activation of 
the coagulation system results in local compromise of the micro-
circulation and regional ischemia especially in the outer medulla. 
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Tubulo-glomerular feedback also likely contributes to a functional 
pre-glomerular arteriolar vasoconstrictive response as a result of 
macula densa sensing of more solute delivery to the distal neph-
ron due to inadequate sodium reabsorption in the injured, more 
proximal parts of the tubule (27). This feedback reduces glomeru-
lar forces for filtration.

Local blood flow to the outer medulla, reduced due to arte-
riolar vasoconstriction, is further compromised by local edema. 
This results in interference with flow to the pars recta of the 
proximal tubule and the thick ascending limb, which are already 
normally hypoxic due to the countercurrent exchange proper-
ties of the vasa recta (Figure 2A and ref. 28). The anatomy of the 
capillaries in the outer medulla makes them very vulnerable to 
occlusion (Figure 2A and ref. 29). The resultant effects on oxy-
gen and nutrient delivery to the epithelial cells results in damage 
particularly to the pars recta, whose cells cannot convert from 
oxidative to glycolytic metabolism (30).

The endothelial cell contributes to the pathology of ischemic 
AKI in many additional ways (refs. 31, 32, and Figure 3). There are 
enhanced endothelium-leukocyte interactions due to increased 
expression of cell adhesion molecules such as ICAM-1 on dam-
aged endothelial cells and increased expression of counterrecep-
tors on leukocytes (33). This results in activation of the leukocytes, 
obstruction of capillaries and postcapillary venules, further acti-
vation and transmigration of leukocytes, production of cytokines, 
and a vigorous proinflammatory state (Figure 3, A and B, and  
ref. 26). Damage to the endothelium results in loss of the glycoca-
lyx, disruption of the actin cytoskeleton, alteration of endothelial 
cell-cell contacts, and breakdown of the perivascular matrix, all of 
which culminate in increased microvascular permeability during 
AKI and loss of fluid into the interstitium (31, 32). Two-photon 
microscopy has revealed loss of endothelial barrier function in the 
cortex within two hours of reperfusion in the rodent (34). With 
reperfusion, a partial transient compromise of the patency of the 
peritubular capillaries can also be seen. Abnormalities in the cap-
illaries of the human postischemic kidney are visible by transmis-
sion electron microcopy (Figure 3, C–F).

The number of microvessels in the inner stripe of the outer 
medulla declines after IRI, potentially facilitated by the downreg-
ulation of angiogenic factors such as VEGF and upregulation of 
inhibitors of angiogenesis (31, 35). This reduced number of ves-
sels is associated with chronic hypoxia (31), which can be expected 
to lead to increased tubular injury and tubulointerstitial fibrosis. 
This can be reinforcing and progressive, since increased fibrosis will 
further compromise the microvasculature and further decrease the 
availability of oxygen and nutrients to the tubules, enhance tubu-
lar stress and epithelial cell injury, possibly interfere with normal 
regenerative processes, and lead to further fibrosis (31, 36). Remain-
ing vessels may have blood flow compromised by endothelial cell 
swelling. There are also other functional consequences of vessel 
dropout, including the development of salt-sensitive hypertension 
and altered concentrating ability, perhaps direct reflections of local 
areas of hypoxia, especially in the medulla (31).

Inflammation
The immune response. Both innate and adaptive immune responses 
are important contributors to the pathology of ischemic injury. 
The innate component is responsible for the early response to 
injury in a non-antigen-specific fashion and comprises neutro-
phils, monocytes/macrophages, DCs, NK cells, and natural killer 
T (NKT) cells. The adaptive component, activated by specific anti-
gens, is initiated within hours and lasts over the course of several 
days after injury. The adaptive response includes DC maturation 
and antigen presentation, T lymphocyte proliferation and activa-
tion, and T to B lymphocyte interactions (Figure 4).

Tubular cells contribute to inflammation. The tubular epithelium is 
not merely a passive victim of injury but also an active participant 
in the inflammatory response in kidney IRI. In addition to gener-
ating proinflammatory and chemotactic cytokines such as TNF-α, 
MCP-1, IL-8, IL-6, IL-1β, TGF-β, RANTES, and epithelial neutro-
phil-activating protein 78 (ENA-78), which activate inflammatory 
cells (26), tubular cells also express Toll-like receptors (TLRs), com-
plement and complement receptors, and costimulatory molecules, 
which regulate T lymphocyte activity (Figure 4).

Figure 1
Causes of reduction in generalized or regional renal blood flow (RBF). Various pathophysiological states and medications can contribute to 
reduction of RBF, causing generalized or localized ischemia to the kidney leading to AKI. This figure represents a partial list and points to isch-
emia as being a common pathway in a variety of clinical states affecting the kidney.
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TLRs are a family of evolutionarily conserved transmembrane 
receptors and prototypic pattern recognition receptors (PRRs), 
which detect exogenous microbial products (37) or endogenous 
ligands from host material released during injury, including high-
mobility group box 1, hyaluronan, and biglycan (38). During AKI, 
renal tubular epithelial cells express increased amounts of both 
TLR2 and TLR4, which modulate the degree of injury (39). Acti-
vation of TLRs initiates a proinflammatory response marked by 
the release of cytokines/chemokines, which attract inflammatory 
cells. Although evidence implicates TLRs in the pathophysiology of 
ischemic AKI, the processes involved in controlling the upregulated 
protein expression and the cellular localization of the molecules are 
not clearly defined, nor has this been well studied in humans.

In addition to its role in generating mediators that contribute 
to the inflammatory response, the proximal tubular epithelium 

expresses MHC II and therefore can present antigen to T cells and 
express costimulatory molecules (40). Proximal tubule cells respond 
to T cell ligands through activation of cell surface receptors (41). 
CD4+ cells express CD40 ligand, which interacts with CD154 to 
stimulate MAPK activation, MCP-1 and IL-8 production, and TNF 
receptor–associated factor 6 (TRAF6) recruitment in proximal 
tubule cells (41). CD40 ligation also induces RANTES production 
by human renal tubular epithelia, an effect that is amplified by pro-
duction of IL-4 and IL-13 by Th2 cells, a subpopulation of T cells 
(42). Ischemia/reperfusion increases expression of B7-1 and B7-2, 
costimulatory tubule cell molecules that interact with CD28 on  
T lymphocytes and facilitate cytokine production (43).

Immune/inflammatory cell subgroups. Neutrophils, monocytes/
macrophages, DCs, and T cells are important contributors to isch-
emic kidney injury and repair. Neutrophils attach to the activated 

Figure 2
Normal nephron, corticomedullary oxygen gradient, and outer medullary microvascular anatomy. (A) Anatomy of nephron with regions identi-
fied. Outer medulla vasculature is shown with capillaries in red and venous system in blue. (B) The vasa recta with countercurrent exchange of 
oxygen resulting in a gradient of decreasing oxygen tension.
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endothelium and accumulate in the kidney both in animal mod-
els and in human AKI (33, 44–46), particularly in the peritubular 
capillary network of the outer medulla, as early as 30 minutes after 
reperfusion. They produce proteases, myeloperoxidase, reactive 
oxygen species, and cytokines, which leads to increased vascular 
permeability and reduced tubular epithelial and endothelial cell 
integrity (47), aggravating kidney injury (46). IL-17 produced by 

neutrophils regulates IFN-γ–mediated neutrophil migration into 
the mouse kidney after IRI (48).

Two types of blood monocytes have been identified in mice. 
Monocytes (49), having a CD11b+CCR2loGr-1−Ly6C−CX3CR1hi 
phenotype, migrate to uninjured tissues rapidly upon leaving the 
bone marrow and differentiate into resident macrophages and 
DCs. In contrast, a second monocyte subset (CD11b+CCR2hiLy6Chi 

Figure 3
Endothelial injury in ischemia/reperfusion AKI. (A) Normal epithelium and endothelium separated by a small interstitial compartment. A glycoca-
lyx coats the endothelium. (B) Ischemia/reperfusion causes swelling of endothelial cells; disruptions of the glycocalyx and endothelial monolayer; 
and upregulation of adhesion molecules such as ICAMs, VCAMs, and selectins, resulting in enhanced leukocyte-endothelium interactions. There 
is formation of microthrombi, and some leukocytes migrate through the endothelial cells into the interstitial compartment. The interstitial compart-
ment is expanded with enhanced numbers of inflammatory cells and interstitial edema forms. (C) Transmission electron microscopy of normal 
human peritubular capillary (Cap). (D–F) Acute tubular necrosis. The peritubular capillaries (PT) show vacuolar degeneration of the endothelial 
cell (arrow in D), thickening and multilayer basement membrane formation (arrows in E), and attachment and penetration of monocyte-like cells 
(arrows in F) in the interstitial region. Scale bars: 2 μm (C and F); 1 μm (D and E).
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Gr-1intCX3CR1lo) infiltrates inflamed kidney tissue and differenti-
ates into macrophages and DCs. Migration to the tissue and differ-
entiation to resident, “inflamed” macrophages (M1 type) or DCs 
is determined by differential pathological conditions. Macrophage 
numbers increase in the mouse kidney at 1 hour after reperfusion, 
peaking at 24 hours and persisting for 7 days (48). This infiltration 
is facilitated by the CCR2 (48) and CX3CR1 signaling pathways 
(50). M1 macrophages produce large amounts of reactive oxygen 
and nitrogen intermediates and inflammatory cytokines (includ-
ing IL-1β and TNF-α) that drive a polarized Th1 immune response. 
M2 macrophages are diverse, generally believed to be “pro-repair,” 
and can be generated when monocytes are exposed to IL-4 or  
IL-13, immune complexes, IL-10, and glucocorticoid hormones. 
M2 macrophages mainly provoke a Th2 response.

In mice, depletion of kidney and spleen macrophages using lipo-
somal clodronate prior to renal IRI prevented AKI, while adoptive 
transfer of macrophages restored the AKI response (51), attesting 
to the importance of these cells in injury to the organ. Macrophages 
are also important for tissue repair, however. At 3–5 days after the 
initial injury, when the tubule cell proliferation and repair process is 
well established, pro-repair M2 macrophages expressing high levels 
of mannose receptor and arginase-1 predominate in the tissue (52).

A network of DCs and macrophages exists in the normal kidney 
serving to constantly sample the environment (53). During tubu-
lar injury, DCs are activated and can in turn activate naive T cells 

by presenting antigen, expressing costimulatory molecules, and 
producing cytokines, thus linking the innate immune response to 
adaptive immunity. A kidney DC subset has also been shown to 
play an important role in recovery or regeneration processes after 
IRI (53). Notably, there is some controversy as to the distinction 
between DCs and tissue macrophages (54).

Both the early and later phases of AKI are characterized by infil-
tration of T lymphocytes, which, like macrophages and DCs, can 
facilitate injury but also promote repair after IRI (55). CD4+ cells, 
in the presence of costimulation with CD28, have been impli-
cated in the potentiation of IRI (56). By contrast, T cell recep-
tor β (TCRβ)+CD4+CD25+Foxp3+ regulatory T cells (Tregs) are 
antiinflammatory lymphocytes that infiltrate the kidney after 3 
or 10 days in the mouse model of ischemia and facilitate repair 
after IRI (57). Rag1–/– mice lack T and B cells and are not pro-
tected from AKI induced by ischemia (55, 58). Multiple groups 
have detected no difference in serum creatinine 24 hours after 
IRI in mice with depletion of either TCRαβ or TCRγδ (55, 59, 60), 
although some have found reduced structural damage (60, 61) 
and/or improved survival and lower serum creatinine (60) at later 
time points after reperfusion.

Complement
The complement system is an important contributor to inflamma-
tion after IRI, but the kidney is unique in that activation after IRI 

Figure 4
Immune response in ischemic AKI. The injured tubular epithelium releases proinflammatory cytokines and chemokines, which aid in recruiting 
immune cells. Epithelial cells also express adhesion molecules, TLRs, and T cell costimulatory molecules, which activate the immune cells 
and amplify the inflammatory responses. Neutrophils, macrophages, and natural killer T (NKT) cells cause direct injury to tubular epithelial 
cells. DCs are involved in both the innate and adaptive immune responses through secretion of inflammatory cytokines and presentation of 
antigens to T lymphocytes.
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occurs predominantly, if not exclusively, by the alternative path-
way (62). Complement upregulates expression of endothelial cell 
adhesion molecules (63). DCs covalently fix marked amounts of 
macrophage-derived C3, the most abundant complement protein 
in the circulation, on their surface (64). This C3 binding promotes 
maturation of DCs, which in turn activate T cell responses.

Deposition of C3 along renal tubular cells can be seen as early 
as 6 hours after reperfusion in a mouse isograft model. This is 
associated with dislocation and decrease of complement inhibi-
tor Crry on the tubular basolateral surface (65). Heterozygosity of 
Crry in mice increases susceptibility to severe ischemic injury (66). 
Crry, together with factor H, a serum alternative pathway regula-
tory protein, regulates complement activation on the basolateral 
surface of tubule epithelial cells. Congenital deficiency of Crry or 
reduced basolateral expression on injured cells permits sponta-
neous complement activation and tubular injury (67). Selective 
inhibition of the alternative pathway protects the kidney from 
ischemic injury (68, 69). CXC chemokine production by tubular 
epithelial cells requires activation of the alternative complement 
pathway (70). In addition, C5b-9 complex (membrane attack com-
plex [MAC]) and C5a also contribute to ischemic AKI (71).

Endogenous inhibitors of inflammation
There are several endogenous inhibitors of inflammation that 
limit damage to the kidney following ischemia. Ischemia results in 
an increase in epithelial cell heme oxygenase–1, which confers an 

antiinflammatory response and protects against IRI (72). Tamm-
Horsfall protein (THP) also confers a protective effect, perhaps by 
downregulating expression of TLR4 in proximal tubular cells in 
the outer medulla (73).

Resolvins (Rvs) and protectin D1 (PD1) are natural antiinflam-
matory compounds that are derived from the omega-3 fatty acid 
docosahexaenoic acid. Administration of D series resolvins (RvDs) 
or PD1 to mice before ischemia resulted in reduced leukocyte 
accumulation, TLR-mediated activation of macrophages, func-
tional and morphological kidney injury, and postischemic fibrosis 
(74). Lipoxin A4 (75) and hepatic growth factor (HGF) also limit 
renal IRI as endogenous immunoregulatory factors (76). Single Ig  
IL-1–related receptor (SIGIRR), also known as Toll–IL-1 receptor 
8 (TIR8), is a member and inhibitor of the TLR/IL-R family that is 
highly expressed in the kidney tubular cells and intrarenal myeloid 
cells. SIGIRR deficiency aggravated postischemic AKI in rodent 
models of IRI in association with increased innate immune signal-
ing in intrarenal DCs and monocytes (77).

Characteristics of tubular injury
Proximal tubule. Epithelial cell injury associated with ischemia/
reperfusion is most apparent in the S3 segment of the proximal 
tubule in most animal models of ischemia (78). The appearance of 
casts and tubular cells in the urine confirms that there is tubular 
cell damage and death by apoptosis and/or necrosis. While there is 
some controversy as to the relative extent of proximal versus distal 

Figure 5
Pathology after ischemia in humans. (A) Outer medulla in human ischemic AKI. The proximal tubules (PT) lose brush border, and cells are 
released into the lumen (thin arrows). Inflammatory cells are seen in the interstitial compartment (thick arrow). Light microscopy: original magni-
fication, ×400; scale bar: 50 μm. (B) Electron microscopy sections through normal human proximal tubules. (C–E) Human AKI. (C) In ischemic 
AKI, lymphocytes are seen infiltrating into the tubule wall (arrow). (D and E) Loss of brush border and contraction of the cell (arrow in D and 
dashed arrow in E) with necrosis (D and E) of proximal tubules are shown. Cellular debris is apparent in the lumen (solid arrows in E). Scale 
bars: 2 μm (B–E). TBM, tubular basement membrane.
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tubule injury in humans (79), more recent studies using biomarkers 
of proximal tubule injury, such as kidney injury molecule–1 (KIM-1)  
ectodomain in the urine following ischemia, reveal significant 
proximal tubule injury in humans (80, 81). While the degree of his-
tologic injury on biopsy is variable, this may be related to technical 
limitations such as infrequent sampling and the fact that biopsy 
needle samples primarily capture the cortex, missing injury to the 
outer medulla. Clearly, in many patients there are very dramatic 
signs of tubule epithelial injury on biopsy (Figure 5, B–E).

The processes of injury and repair to the kidney epithelium are 
depicted schematically in Figure 6A. Ischemia results in rapid loss 
of cytoskeletal integrity and cell polarity (82). There is shedding 
of the proximal tubule brush border (44); loss of polarity with 
mislocalization of adhesion molecules and other membrane pro-
teins such as the Na+K+-ATPase and β-integrins (83, 84); cytokine-
induced disruption of cell-matrix adhesion dependent on β inte-
grins (26); and disruption of cell-cell interactions at adherent and 
tight junctions (12, 85). There are also changes in actin localiza-
tion from apical to lateral cell membrane (86, 87).

Under normal circumstances, epithelial cells communicate with 
one another via tight junctions and adhesion junctions, which are 
regulated by the F-actin cytoskeleton. In turn, the cytoskeleton is reg-

ulated by the Rho family of GTPases, which are activated in response 
to ischemia. Downstream effectors of Rho GTPases include the Rho-
associated coiled-coil–forming protein kinase (ROCK). ROCK is a 
negative regulator of the pro-survival PI3K/AKT pathway. Activation 
of ROCK has been implicated in increased cell apoptosis, and inhibi-
tors of ROCK have been reported to attenuate IRI (88).

With severe injury, viable and nonviable cells are desquamated, 
leaving the basement membrane as the only barrier between the fil-
trate and the peritubular interstitium. The increase in permeability 
results in backleak of glomerular filtrate from the tubular lumen 
to the intersitium. The cells and their debris that detach from the 
basement membrane combine with proteins present in the tubular 
lumen such as THP and fibronectin (89) to form casts that can 
obstruct the tubule, increasing intratubular pressure; these casts 
are detected in the urine as a hallmark of AKI in humans.

AKI results in the activation of a large number of genes (90, 91), 
among which KIM-1 (90, 92) and neutrophil gelatinase-associated 
lipocalin (NGAL) (93) are the most highly upregulated in the proxi-
mal and distal tubules, respectively. Both are also present in the 
urine of animals and patients with AKI and have been found to be 
useful noninvasive biomarkers of injury (94, 95). While produced 
in the distal nephron and many other organs, NGAL is filtered and 

Figure 6
Normal repair in ischemic AKI. (A) The current understanding of tubular injury and repair after ischemic AKI. With IRI, the normally highly polar 
epithelial cell loses its polarity and brush border with proteins mislocated on the cell membrane. With increasing time/severity of ischemia, there 
is cell death by either necrosis or apoptosis. Some of the necrotic debris is released into the lumen. Viable epithelial cells migrate and cover 
denuded areas of the basement membrane. These cells undergo division and replace lost cells. Ultimately, the cells go on to differentiate and 
reestablish the normal polarity of the epithelium. (B) The photomicrograph shows a vigorous repair process after ischemic injury in the mouse. 
Cells that have entered the cell cycle are stained with Ki-67. Cells specifically in the S phase of the cell cycle have taken up BrdU, which had 
been injected into the animal. Arrows point to some of the cross sections of tubules that are filled with cellular debris. Scale bar: 50 μm. Image 
in B reproduced with permission from Nature Medicine (128).
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reabsorbed by the normal proximal tubule. KIM-1 is a phospha-
tidylserine receptor that recognizes and directs apoptotic cells to 
lysosomes in proximal tubular cells. It also mediates phagocytosis 
of necrotic cells and oxidized lipoproteins by renal proximal tubu-
lar cells. In addition to facilitating clearance of the apoptotic debris 
from the tubular lumen, KIM-1 may play an important role in lim-
iting the immune response to injury, since phagocytosis of apop-
totic bodies is one mechanism for limiting the proinflammatory 
response (96). KIM-1 has been reported to be an endogenous ligand 
for leukocyte mono-Ig-like receptor 5 (LMIR5), and the KIM-1–
LMIR5 interaction has been implicated in neutrophil recruitment 
(97). The ectodomain of KIM-1 is shed into the urine of human and 
rodent kidneys with renal injury and serves as a biomarker for the 
early diagnosis of AKI in humans and rodents (98).

NGAL is an iron-transporting protein (99), and iron has been 
proposed to play an important role in protection of the proxi-

mal tubule. Intravenous administration of purified recombinant 
NGAL results in uptake by proximal tubular cells, where it inhib-
its apoptosis, enhances proliferation, and provides significant 
functional and pathological protection in murine models of renal 
IRI (100, 101). NGAL forms a complex with iron-binding sidero-
phores and iron (102). Iron scavenging by deferoxamine, or apo-
transferrin, an endogenous iron-binding protein, protects against 
ischemia/reperfusion–mediated tubular injury and organ failure 
by abrogating superoxide formation. The mechanism underlying 
this effect has been postulated to be the sequestration of iron via 
siderophores to stop inappropriately liganded iron from produc-
ing damaging oxygen radicals (100).

Proteins upregulated in the proximal tubule and believed to be 
protective against injury include heme oxygenase (72) and heat 
shock proteins (103). Heme oxygenase activity is the rate-limiting 
step in the degradation of heme to biliverdin, releasing iron and 

Figure 7
Abnormal repair in ischemic AKI. Repair after AKI can result in incomplete repair and fibrotic lesions, which may result in progressive renal 
dysfunction. Factors including long-term hypoxia and hypertension result from chronic loss of peritubular microvessels. Sustained production of 
profibrotic cytokines such as IL-13, arginase, and TGF-β1 from the chronically activated macrophages (MΦ) contribute to postischemic fibrosis. 
Renal tubular epithelial cells also play a critical role in the development of fibrosis through fundamental changes in their proliferation processes, 
including cell cycle arrest in the G2/M phase. This results in a secretory phenotype that facilitates the production by the epithelial cells of profi-
brotic growth factors (including TGF-β1 and CTGF). Fibrogenesis is stimulated, and progression to chronic renal failure is accelerated.
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carbon monoxide (CO). Many of the products of heme oxygenase 
action are cytoprotective. CO exerts vasorelaxant, antiinflamma-
tory, and antiapoptotic effects.

Autophagy also plays an important role in proximal tubule cell 
survival after IRI in rodents (104). When the ability of the cells to 
undergo autophagy is blocked, the cells accumulate malformed 
mitochondria and ubiquitin-positive cytoplasmic inclusions, accu-
mulate p62, and have increased propensity to become apoptotic.

Distal tubule. The straight portion of the distal tubule, the medul-
lary thick ascending limb (MTAL) (Figure 2A), has a close spatial 
association with the proximal straight tubule in the outer stripe 
of the outer medulla. Cells from the distal nephron are more resis-
tant to hypoxia, ischemia, and oxidative injury and remain intact 
during IRI. The MTAL has a greater capacity to convert from oxi-
dative to glycolytic metabolism when mitochondrial function is 
limited during reduced oxygen availability (30), and hence is better 
poised to adapt to the increased hypoxia that characterizes isch-
emia. In addition, the marked increase in ERK pathway activation 
(105), as well as the production of antiapoptotic Bcl-2 proteins 
and the reparative growth factors in distal tubular cells, which act 
synergistically to minimize cell death, might underlie the relative 
resistance to ischemic injury (106, 107). Other reparative or sur-
vival growth factors synthesized in the distal nephron, including 
EGF, IGF-1, and HGF, may exert paracrine effects to protect the 
sensitive proximal tubule from injury and promote proliferation 
and repair of surviving proximal tubules cells via distal-proximal 
cell-cell crosstalk mechanisms (106, 107).

Repair of the epithelium
Normal repair. In contrast to the heart or brain, the kidney can 
completely recover from an ischemic or toxic insult that results in 
cell death. However, this may occur less frequently in humans than 
previously believed, since it has been increasingly recognized that 
AKI, especially when there is underlying CKD, can lead to accelera-
tion of CKD with more rapid onset of ESRD (8). Under normal 
circumstances, human proximal tubule cells divide at a low rate 
(108). Cell proliferation balances the loss of tubular epithelial cells 
due to cell death or release from the basement membrane into the 
urine (109). This low rate of turnover changes dramatically after 
an ischemic or toxic insult, when there is a marked increase in cell 
death by necrosis and apoptosis and a vigorous response to replace 
these cells (Figure 6B).

There had been a debate about whether the cells that replen-
ish the epithelial cell population after injury originate from 
endogenous surviving epithelial cells, bone marrow stromal cells 
(BMSCs), or intrarenal progenitor cells. Early hypotheses (110, 
111) suggested that the cells came from surviving proximal tubule 
cells; however, studies subsequently suggested that bone mar-
row–derived cells, including hematopoietic stem cells (HSCs) and 
mesenchymal stem cells, directly replace the epithelial cells that 
have been lost (112, 113). Additional analyses (114, 115), however, 
clarified that bone marrow–derived cells do not directly replace the 
tubule epithelial cells that are lost with injury, but exert paracrine 
effects that facilitate repair potentially by reducing inflammation; 
recent data suggest that this effect may be mediated by microves-
icles that transfer membrane receptors, proteins, mRNAs, micro
RNAs, and organelles (116–118). To determine whether intrarenal 
progenitor cells were the origin of proliferating tubular cells after 
injury, genetic fate-mapping techniques were employed in trans-
genic mice, and the results demonstrated that surviving tubular 

cells proliferate and this accounts for replenishment of the tubular 
epithelium after ischemia (119).

When the kidney recovers after epithelial cells are lost, the surviv-
ing cells dedifferentiate, migrate along the basement membrane, 
proliferate to restore cell number, and then differentiate, resulting 
in restoration of the functional integrity of the nephron (Figure 6 
and ref. 12). To some degree, repair of the kidney parallels organ-
ogenesis both in the high rate of DNA synthesis and apoptosis 
and in patterns of gene expression. Molecules such as vimentin 
(110) and neural cell adhesion molecule (NCAM) (120), which are 
expressed in the metanephric mesenchyme during kidney develop-
ment but not in the mature nephron, are abundantly expressed in 
proximal tubules after IRI. The factors responsible for, and the sig-
nificance of, reversion to a less-differentiated cell phenotype and 
its relationship to the proliferative and migratory response after 
renal epithelial cell injury are poorly understood.

Abnormal repair and progressive CKD after AKI. Repair after injury 
is frequently maladaptive (Figure 7). The development of fibrosis 
after acute tubular injury has important clinical consequences (9, 
121). AKI can lead to incomplete tubular repair, persistent tubu-
lointerstitial inflammation, proliferation of fibroblasts, and exces-
sive deposition of extracellular matrix. Many injury factors (Fig-
ures 3 and 7), especially long-term hypoxia from sustained loss of 
peritubular microvessels (31) and disturbance of immune-respon-
dent components such as chronic activation of macrophages (122, 
123), have been suggested to contribute to postischemic fibrosis.

A fundamental unanswered question in the pathogenesis of kid-
ney fibrosis after AKI is the nature of the molecular switch that 
determines renal tubular reparative or atrophic/fibrotic responses to 
injury. Epithelial-mesenchymal transition (EMT) has been thought 
to be one of the major pathways toward fibrosis (124). Recent stud-
ies, however, suggest that the myofibroblasts are generated mainly 
from perivascular fibroblasts, or pericytes, but not due to EMT by 
tubular epithelial cells (119, 125, 126), although this remains quite 
controversial (127). The epithelial cell can generate pro-fibrogenic 
cytokines, including TGF-β1 and connective tissue growth factor 
(CTGF), whose production is enhanced by abnormalities in cell 
cycle progression as the surviving cells attempt to repair the epithe-
lium. There is arrest in the G2/M phase of the cell cycle in severe 
or sustained kidney injury, and arrest at this phase facilitates the 
generation of TGF-β1 and CTGF through processes that involve 
activation of JNK signaling (128). These factors may then induce 
epigenetic changes in resident fibroblasts, including hypermethyl-
ation of RASAL1, an inhibitor of the Ras oncoprotein, which results 
in prolonged fibroblast activation and fibrogenesis (129).

Protection against injury by ischemic preconditioning
An area of increasing interest is the possibility of rendering an organ 
resistant to subsequent injury by a prior insult or preconditioning 
maneuver. Ischemic preconditioning of the kidney confers protec-
tion against a subsequent ischemic attack (130). This protective 
effect decreases with increasing time between the preconditioning 
insult and the subsequent insult, but in a mouse model, protection 
was measured up to 12 weeks after the initial insult (131).

A number of cellular factors have been implicated in precondi-
tioning. Preinduction before IRI of the master regulators of genes 
activated by low oxygen tension, Hif1a and Hif2a, in the kidney 
(132) leads to protection against injury in rodents (133, 134). Mice 
with loss of HIF-1α or HIF-2α expression are more susceptible to 
renal IRI (135, 136). HIF-1α deficiency results in complete loss of 
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ischemic preconditioning–induced cardioprotection in mice (137). 
Injury-induced enhancement of iNOS expression likely also con-
tributes to kidney protection afforded by prolonged ischemic pre-
conditioning (131). The elevated relative ratio of ERK1/2 activa-
tion to JNK or p38 activation in the preconditioned postischemic 
kidney is also thought to be protective against the second isch-
emic insult (138, 139). JNK activation is associated with cell death, 
and ERK activity is considered protective (105). Other candidate 
mediators of preconditioning include heat shock proteins (HSP27, 
HSP70) (131, 140), heme oxygenase (141, 142), reactive oxygen spe-
cies (143), and endoplasmic reticulum stress proteins (144). Tregs 
have also been implicated in protection, since transfer of these cells 
from a preconditioned mouse to a normal mouse protected the 
recipient against subsequent IRI (145–147). This effect was inde-
pendent of iNOS expression, and the functional benefit was dis-
sociated from any effect on neutrophil or macrophage infiltration 
of the kidney after ischemia (146, 147).

Various preconditioning interventions have shown encour-
aging beneficial effects clinically in cardiac IRI (148); however, 
studies relating preconditioning to renal protection in humans 
are still rare. In a randomized controlled trial on patients under-
going endovascular aneurysm repair, remote ischemic precondi-
tioning reduced the levels of urinary biomarkers (urinary reti-
nol binding protein and albumin), reflecting kidney injury, but 
did not affect renal outcomes. This study was preliminary and 
involved only 40 patients (149).

Conclusions
The cellular contributions to the pathophysiology of ischemic 
renal injury are protean. AKI often occurs in the context of mul-
tiple organ failure and sepsis and involves hemodynamic altera-

tions, inflammation, and direct injury to the tubular epithelium, 
followed by a repair process that restores epithelial differentiation 
and function. Inflammation is an important component of this 
disease, playing a considerable role in its pathophysiology. Sig-
nificant progress has been made in defining major components of 
this process, yet the complex molecular and cellular interactions 
among endothelial cells, inflammatory cells, and the injured epi-
thelium are poorly understood, although we are gaining ground 
in this quest. Recently researchers have come to realize the intrin-
sic capacity of the damaged proximal epithelium to repair itself 
by dedifferentiation and proliferation of surviving epithelial cells 
without a source of distinct progenitor cells. We have also identi-
fied potential pathophysiological links among injury, abnormal 
repair, and the profibrotic sequelae of severe injury that may help 
to explain why in humans AKI is such a great risk factor for pro-
gression of CKD. Better understanding of the molecular, cellular, 
and genetic aspects underlying kidney injury will hopefully result 
in the design of more targeted therapies to prevent injury and 
hasten repair. Progress is being made on multiple fronts, but we 
continue to be humbled by this disease, whose mortality rate has 
changed little over four decades.
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