Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of …

KW Wucherpfennig, I Catz… - The Journal of …, 1997 - Am Soc Clin Investig
KW Wucherpfennig, I Catz, S Hausmann, JL Strominger, L Steinman, KG Warren
The Journal of clinical investigation, 1997Am Soc Clin Investig
Myelin basic protein (MBP) may be an important autoantigen in multiple sclerosis (MS), with
the MBP (82-100) region being immunodominant for T cells and autoantibodies. The
structural requirements for autoantibody recognition were compared to those previously
defined for MBP-specific T cell clones. MBP autoantibodies were affinity-purified from central
nervous system lesions of 11/12 postmortem cases studied. The MBP (83-97) peptide was
immunodominant in all 11 cases since it inhibited autoantibody binding to MBP> 95 …
Myelin basic protein (MBP) may be an important autoantigen in multiple sclerosis (MS), with the MBP(82-100) region being immunodominant for T cells and autoantibodies. The structural requirements for autoantibody recognition were compared to those previously defined for MBP-specific T cell clones. MBP autoantibodies were affinity-purified from central nervous system lesions of 11/12 postmortem cases studied. The MBP(83-97) peptide was immunodominant in all 11 cases since it inhibited autoantibody binding to MBP > 95%. Residues contributing to autoantibody binding were located in a 10-amino acid segment (V86-T95) that also contained the MHC/T cell receptor contact residues of the T cell epitope. In the epitope center, the same residues were important for antibody binding and T cell recognition. Based on the antibody-binding motif, microbial peptides were identified that were bound by purified autoantibodies. Autoantibody binding of microbial peptides required sequence identity at four or five contiguous residues in the epitope center. Microbial peptides previously found to activate T cell clones did not have such obvious homology to MBP since sequence identity was not required at MHC contacts. The similar fine specificity of B cells and T cells may be useful for tolerance induction to MBP in MS.
The Journal of Clinical Investigation