[HTML][HTML] Tetracyclines downregulate the production of LPS-induced cytokines and chemokines in THP-1 cells via ERK, p38, and nuclear factor-κB signaling pathways

J Sun, H Shigemi, Y Tanaka, T Yamauchi… - … and Biophysics Reports, 2015 - Elsevier
J Sun, H Shigemi, Y Tanaka, T Yamauchi, T Ueda, H Iwasaki
Biochemistry and Biophysics Reports, 2015Elsevier
Recent reports have shown that antibiotics such as macrolide, aminoglycoside, and
tetracyclines have immunomodulatory effects in addition to essential antibiotic effects. These
agents may have important effects on the regulation of cytokine and chemokine production.
However, the precise mechanism is unknown. This time, we used Multi Plex to measure the
production of cytokines and chemokines following tetracycline treatment of
lipopolysaccharide (LPS)-induced THP-1 cells. The signaling pathways were investigated …
Abstract
Recent reports have shown that antibiotics such as macrolide, aminoglycoside, and tetracyclines have immunomodulatory effects in addition to essential antibiotic effects. These agents may have important effects on the regulation of cytokine and chemokine production. However, the precise mechanism is unknown. This time, we used Multi Plex to measure the production of cytokines and chemokines following tetracycline treatment of lipopolysaccharide (LPS)-induced THP-1 cells. The signaling pathways were investigated with Western blotting analysis. Three tetracyclines significantly suppressed the expression of cytokines and chemokines induced by LPS. Minocycline (50 μg/ml), tigecycline (50 μg/ml), or doxycycline (50 μg/ml) were added after treatment with LPS (10 μg/ml). Tumor necrosis factor-α was downregulated to 16%, 14%, and 8%, respectively, after 60 min compared to treatment with LPS without agents. Interleukin-8 was downregulated to 43%, 32%, and 26% at 60 min. Macrophage inflammatory protein (MIP)-1α was downregulated to 23%, 33%, and 16% at 120 min. MIP-1β was downregulated to 21%, 11%, and 2% at 120 min. Concerning about signaling pathways, the mechanisms of the three tetracyclines might not be the same. Although the three tetracyclines showed some differences in the time course, tetracyclines modulated phosphorylation of the NF-κB pathway, p38 and ERK1/2/MAPK pathways, resulting in inhibition of cytokine and chemokine production. In addition, SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor) significantly suppressed the expression of TNF-α and IL-8 in LPS-stimulated THP-1 cells. And further, the NF-κB inhibitor, BAY11-7082, almost completely suppressed LPS-induced these two cytokines production. Thus, more than one signaling pathway may be involved in tetracyclines downregulation of the expression of LPS-induced cytokines and chemokines in THP-1 cells. And among the three signaling pathways, NF-κB pathway might be the dominant pathway on tetracyclines modification the LPS-induced cytokines production in THP-1 cells. In general, minocycline and doxycycline suppressed the production of cytokines and chemokines in LPS-stimulated THP-1 cell lines via mainly the inhibition of phosphorylation of NF-κB pathways. Tigecycline has the same structure as the other tetracyclines, however, it showed the different properties of cytokine modulation in the experimental time course.
Elsevier