Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Creating a graft-friendly environment for stem cells in diseased brains
Robert Y.L. Tsai
Robert Y.L. Tsai
Published January 2, 2018; First published December 11, 2017
Citation Information: J Clin Invest. 2018;128(1):116-119. https://doi.org/10.1172/JCI98490.
View: Text | PDF
Category: Commentary

Creating a graft-friendly environment for stem cells in diseased brains

  • Text
  • PDF
Abstract

Most of the adult CNS lacks regenerative activity in terms of both neuron birth and neurite outgrowth. While this regeneration-unfriendly environment of the adult CNS may preserve the existing neuronal circuitry that takes years to develop in higher organisms, it also poses a major obstacle for CNS repair later in life. In this issue of the JCI, Song et al. report on their development of a strategy that uses region-specific and molecularly engineered astrocytes to turn an unfavorable brain environment into a favorable one for engrafted neural stem/progenitor cells (NSC/NPCs). In a rat model of Parkinson’s disease (PD), cografting NPCs with midbrain-derived astrocytes engineered to overexpress the transcription factors Nurr1 and Foxa2 promotes maturation and survival of the graft, resulting in therapeutic improvement. The results of this study raise the prospect of using modified astrocytes to improve the survival, maturation, and integration of engrafted NSC/NPCs as a restorative treatment for PD.

Authors

Robert Y.L. Tsai

×

Full Text PDF | Download (2.65 MB)

Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts