Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • Nuclear Receptors (Apr 2017)
    • Metabolism and Inflammation (Jan 2017)
    • Hypoxia and Inflammation (Oct 2016)
    • View all review series...
  • Collections
    • Recently published
    • Commentaries
    • Concise Communication
    • Editorials
    • Opinion
    • Scientific Show Stoppers
    • Top read articles
    • In-Press Preview
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication

Immunology

  • 722 Articles
  • 3 Posts
  • ←
  • 1
  • 2
  • 3
  • …
  • 72
  • 73
  • →
Nox2 in regulatory T cells promotes angiotensin II–induced cardiovascular remodeling
Amber Emmerson, … , Giovanna Lombardi, Ajay M. Shah
Amber Emmerson, … , Giovanna Lombardi, Ajay M. Shah
Published April 24, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97490.
View: Text | PDF

Nox2 in regulatory T cells promotes angiotensin II–induced cardiovascular remodeling

  • Text
  • PDF
Abstract

The superoxide-generating enzyme Nox2 contributes to hypertension and cardiovascular remodeling triggered by activation of the renin-angiotensin system. Multiple Nox2-expressing cells are implicated in angiotensin II (AngII)-induced pathophysiology, but the importance of Nox2 in leukocyte subsets is poorly understood. Here, we investigated the role of Nox2 in T cells, particularly Tregs. Mice globally deficient in Nox2 displayed increased numbers of Tregs in the heart at baseline whereas AngII-induced T-effector cell (Teffs) infiltration was inhibited. To investigate the role of Treg Nox2, we generated a mouse line with CD4-targeted Nox2 deficiency (Nox2fl/flCD4Cre+). These animals showed inhibition of AngII-induced hypertension and cardiac remodeling related to increased tissue-resident Tregs and reduction in infiltrating Teffs, including Th17 cells. The protection in Nox2fl/flCD4Cre+ mice was reversed by anti-CD25 Ab-depletion of Tregs. Mechanistically, Nox2–/y Tregs showed higher in vitro suppression of Teffs proliferation than WT Tregs, increased nuclear levels of FoxP3 and NF-κB, and enhanced transcription of CD25, CD39, and CD73. Adoptive transfer of Tregs confirmed that Nox2-deficient cells had greater inhibitory effects on AngII-induced heart remodeling than WT cells. These results identify a previously unrecognized role of Nox2 in modulating suppression of Tregs, which acts to enhance hypertension and cardiac remodeling.

Authors

Amber Emmerson, Silvia Cellone Trevelin, Heloise Mongue-Din, Pablo D. Becker, Carla Ortiz, Lesley A. Smyth, Qi Peng, Raul Elgueta, Greta Sawyer, Aleksandar Ivetic, Robert I. Lechler, Giovanna Lombardi, Ajay M. Shah

×

β-Catenin–mediated immune evasion pathway frequently operates in primary cutaneous melanomas
Jérémie Nsengimana, … , D. Timothy Bishop, Julia Newton-Bishop
Jérémie Nsengimana, … , D. Timothy Bishop, Julia Newton-Bishop
Published April 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI95351.
View: Text | PDF

β-Catenin–mediated immune evasion pathway frequently operates in primary cutaneous melanomas

  • Text
  • PDF
Abstract

Immunotherapy prolongs survival in only a subset of melanoma patients, highlighting the need to better understand the driver tumor microenvironment. We conducted bioinformatic analyses of 703 transcriptomes to probe the immune landscape of primary cutaneous melanomas in a population-ascertained cohort. We identified and validated 6 immunologically distinct subgroups, with the largest having the lowest immune scores and the poorest survival. This poor-prognosis subgroup exhibited expression profiles consistent with β-catenin–mediated failure to recruit CD141+ DCs. A second subgroup displayed an equally bad prognosis when histopathological factors were adjusted for, while 4 others maintained comparable survival profiles. The 6 subgroups were replicated in The Cancer Genome Atlas (TCGA) melanomas, where β-catenin signaling was also associated with low immune scores predominantly related to hypomethylation. The survival benefit of high immune scores was strongest in patients with double-WT tumors for BRAF and NRAS, less strong in BRAF-V600 mutants, and absent in NRAS (codons 12, 13, 61) mutants. In summary, we report evidence for a β-catenin–mediated immune evasion in 42% of melanoma primaries overall and in 73% of those with the worst outcome. We further report evidence for an interaction between oncogenic mutations and host response to melanoma, suggesting that patient stratification will improve immunotherapeutic outcomes.

Authors

Jérémie Nsengimana, Jon Laye, Anastasia Filia, Sally O’Shea, Sathya Muralidhar, Joanna Poźniak, Alastair Droop, May Chan, Christy Walker, Louise Parkinson, Joanne Gascoyne, Tracey Mell, Minttu Polso, Rosalyn Jewell, Juliette Randerson-Moor, Graham P. Cook, D. Timothy Bishop, Julia Newton-Bishop

×

RIP kinase 1–dependent endothelial necroptosis underlies systemic inflammatory response syndrome
Matija Zelic, … , Manolis Pasparakis, Michelle A. Kelliher
Matija Zelic, … , Manolis Pasparakis, Michelle A. Kelliher
Published April 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96147.
View: Text | PDF

RIP kinase 1–dependent endothelial necroptosis underlies systemic inflammatory response syndrome

  • Text
  • PDF
Abstract

Receptor interacting protein kinase 1 (RIPK1) has important kinase-dependent and kinase-independent scaffolding functions that activate or prevent apoptosis or necroptosis in a cell context–dependent manner. The kinase activity of RIPK1 mediates hypothermia and lethality in a mouse model of TNF-induced shock, reflecting the hyperinflammatory state of systemic inflammatory response syndrome (SIRS), where the proinflammatory “cytokine storm” has long been viewed as detrimental. Here, we demonstrate that cytokine and chemokine levels did not predict survival and, importantly, that kinase-inactive Ripk1D138N/D138N hematopoietic cells afforded little protection from TNF- or TNF/zVAD-induced shock in reconstituted mice. Unexpectedly, RIPK1 kinase–inactive mice transplanted with WT hematopoietic cells remained resistant to TNF-induced shock, revealing that a nonhematopoietic lineage mediated protection. TNF-treated Ripk1D138N/D138N mice exhibited no significant increases in intestinal or vascular permeability, nor did they activate the clotting cascade. We show that TNF administration damaged the liver vascular endothelium and induced phosphorylated mixed lineage kinase domain-like (phospho-MLKL) reactivity in endothelial cells isolated from TNF/zVAD-treated WT, but not Ripk1D138N/D138N, mice. These data reveal that the tissue damage present in this SIRS model is reflected, in part, by breaks in the vasculature due to endothelial cell necroptosis and thereby predict that RIPK1 kinase inhibitors may provide clinical benefit to shock and/or sepsis patients.

Authors

Matija Zelic, Justine E. Roderick, Joanne A. O’Donnell, Jesse Lehman, Sung Eun Lim, Harish P. Janardhan, Chinmay M. Trivedi, Manolis Pasparakis, Michelle A. Kelliher

×

Accumulation of follicular CD8+ T cells in pathogenic SIV infection
Sara Ferrando-Martinez, … , Constantinos Petrovas, Richard A. Koup
Sara Ferrando-Martinez, … , Constantinos Petrovas, Richard A. Koup
Published April 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96207.
View: Text | PDF

Accumulation of follicular CD8+ T cells in pathogenic SIV infection

  • Text
  • PDF
Abstract

LN follicles constitute major reservoir sites for HIV/SIV persistence. Cure strategies could benefit from the characterization of CD8+ T cells able to access and eliminate HIV-infected cells from these areas. In this study, we provide a comprehensive analysis of the phenotype, frequency, localization, and functionality of follicular CD8+ T cells (fCD8+) in SIV-infected nonhuman primates. Although disorganization of follicles was a major factor, significant accumulation of fCD8+ cells during chronic SIV infection was also observed in intact follicles, but only in pathogenic SIV infection. In line with this, tissue inflammatory mediators were strongly associated with the accumulation of fCD8+ cells, pointing to tissue inflammation as a major factor in this process. These fCD8+ cells have cytolytic potential and can be redirected to target and kill HIV-infected cells using bispecific antibodies. Altogether, our data support the use of SIV infection to better understand the dynamics of fCD8+ cells and to develop bispecific antibodies as a strategy for virus eradication.

Authors

Sara Ferrando-Martinez, Eirini Moysi, Amarendra Pegu, Sarah Andrews, Krystelle Nganou Makamdop, David Ambrozak, Adrian B. McDermott, David Palesch, Mirko Paiardini, George N. Pavlakis, Jason M. Brenchley, Daniel Douek, John R. Mascola, Constantinos Petrovas, Richard A. Koup

×

Increased vessel perfusion predicts the efficacy of immune checkpoint blockade
Xichen Zheng, … , Qingyu Wu, Yuhui Huang
Xichen Zheng, … , Qingyu Wu, Yuhui Huang
Published April 16, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96582.
View: Text | PDF

Increased vessel perfusion predicts the efficacy of immune checkpoint blockade

  • Text
  • PDF
Abstract

Immune checkpoint blockade (ICB) has demonstrated curative potential in several types of cancer, but only for a small number of patients. Thus, the identification of reliable and noninvasive biomarkers for predicting ICB responsiveness is an urgent unmet need. Here, we show that ICB increased tumor vessel perfusion in treatment-sensitive EO771 and MMTV-PyVT breast tumor as well as CT26 and MCA38 colon tumor models, but not in treatment-resistant MCaP0008 and 4T1 breast tumor models. In the sensitive tumor models, the ability of anti–cytotoxic T lymphocyte–associated protein 4 or anti–programmed cell death 1 therapy to increase vessel perfusion strongly correlated with its antitumor efficacy. Moreover, globally enhanced tumor vessel perfusion could be detected by Doppler ultrasonography before changes in tumor size, which predicted final therapeutic efficacy with more than 90% sensitivity and specificity. Mechanistically, CD8+ T cell depletion, IFN-γ neutralization, or implantation of tumors in IFN-γ receptor knockout mice abrogated the vessel perfusion enhancement and antitumor effects of ICB. These results demonstrated that ICB increased vessel perfusion by promoting CD8+ T cell accumulation and IFN-γ production, indicating that increased vessel perfusion reflects the successful activation of antitumor T cell immunity by ICB. Our findings suggest that vessel perfusion can be used as a novel noninvasive indicator for predicting ICB responsiveness.

Authors

Xichen Zheng, Zhaoxu Fang, Xiaomei Liu, Shengming Deng, Pei Zhou, Xuexiang Wang, Chenglin Zhang, Rongping Yin, Haitian Hu, Xiaolan Chen, Yijie Han, Yun Zhao, Steven H. Lin, Songbing Qin, Xiaohua Wang, Betty Y.S. Kim, Penghui Zhou, Wen Jiang, Qingyu Wu, Yuhui Huang

×

JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies
Gina A. Montealegre Sanchez, … , William L. Macias, Raphaela Goldbach-Mansky
Gina A. Montealegre Sanchez, … , William L. Macias, Raphaela Goldbach-Mansky
Published April 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98814.
View: Text | PDF

JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies

  • Text
  • PDF
Abstract

BACKGROUND. Monogenic Interferon (IFN)-mediated autoinflammatory diseases present in infancy with systemic inflammation, an IFN-response-gene-signature (IRS), inflammatory organ damage and high mortality. We used the janus kinase (JAK) inhibitor baricitinib with IFN-blocking activity in vitro, to ameliorate disease. METHODS. Between October 2011 and February 2017, 10 patients with CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures), 4 with SAVI (Stimulator of IFN genes (STING)-associated vasculopathy with onset in infancy), and 4 patients with other interferonopathies were enrolled in an Expanded Access Program. Patients underwent dose-escalation, benefit was assessed by reductions in daily disease symptoms and corticosteroid requirement. Quality-of-life, organ inflammation, changes in IFN-induced biomarkers, and safety were longitudinally assessed. RESULTS. 18 patients were treated for a mean duration of 3.0 years (1.5–4.9 years). The median daily symptom score decreased from 1.3 (IQR 0.93–1.78) to 0.25 (IQR 0.1-0.63) (P < 0.0001). In 14 patients receiving steroids at baseline, daily prednisone doses decreased from 0.44 mg/kg/day (IQR 0.31–1.09) to 0.11 mg/kg/day (IQR 0.02–0.24) (P < 0.01); 5 of 10 CANDLE patients achieved lasting clinical remission. Quality of life, height and bone mineral density Z-scores significantly improved, and IFN biomarkers decreased. Three patients discontinued, two with genetically undefined conditions due to lack of efficacy, and one CANDLE patient due to BK viremia and azotemia. The most common adverse events were upper respiratory infections, gastroenteritis, BK viruria and viremia. CONCLUSION. On baricitinib treatment, clinical manifestations, inflammatory and IFN biomarkers improved in patients with the monogenic interferonopathies, CANDLE, SAVI and 2 other interferonopathies. Monitoring safety and efficacy is important in benefit-risk assessment. TRIAL REGISTRATION. ClinicalTrials.gov NCT01724580 and NCT02974595. FUNDING. NIH, NIAID, NIAMS, NIDDK, NHLBI, NINDS, and the Clinical Center. Baricitinib was provided by Eli Lilly. Eli Lilly is the sponsor of the compassionate use program.

Authors

Gina A. Montealegre Sanchez, Adam Reinhardt, Suzanne Ramsey, Helmut Wittkowski, Philip J. Hashkes, Yackov Berkun, Susanne Schalm, Sara Murias, Jason A. Dare, Diane Brown, Deborah L. Stone, Ling Gao, Thomas Klausmeier, Dirk Foell, Adriana A. de Jesus, Dawn C. Chapelle, Hanna Kim, Samantha Dill, Robert Colbert, Laura Failla, Bahar Kost, Michelle O'Brien, James C. Reynolds, Les R. Folio, Katherine R. Calvo, Scott M. Paul, Nargues Weir, Alessandra Brofferio, Ariane Soldatos, Angélique Biancotto, Edward W. Cowen, John G. Digiovanna, Massimo Gadina, Andrew J. Lipton, Colleen Hadigan, Steven M. Holland, Joseph Fontana, Ahmad S. Alawad, Rebecca J. Brown, Kristina I. Rother, Theo Heller, Kristina M. Brooks, Parag Kumar, Stephen R. Brooks, Meryl Waldman, Harsharan K. Singh, Volker Nickeleit, Maria Silk, Apurva Prakash, Jonathan M. Janes, Seza Ozen, Paul G. Wakim, Paul A. Brogan, William L. Macias, Raphaela Goldbach-Mansky

×

Recipient mucosal-associated invariant T cells control GVHD within the colon
Antiopi Varelias, … , Philip Hugenholtz, Geoffrey R. Hill
Antiopi Varelias, … , Philip Hugenholtz, Geoffrey R. Hill
Published April 9, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI91646.
View: Text | PDF

Recipient mucosal-associated invariant T cells control GVHD within the colon

  • Text
  • PDF
Abstract

Mucosal-associated invariant T (MAIT) cells are a unique innate-like T cell subset that responds to a wide array of bacteria and yeast through recognition of riboflavin metabolites presented by the MHC class I–like molecule MR1. Here, we demonstrate using MR1 tetramers that recipient MAIT cells are present in small but definable numbers in graft-versus-host disease (GVHD) target organs and protect from acute GVHD in the colon following bone marrow transplantation (BMT). Consistent with their preferential juxtaposition to microbial signals in the colon, recipient MAIT cells generate large amounts of IL-17A, promote gastrointestinal tract integrity, and limit the donor alloantigen presentation that in turn drives donor Th1 and Th17 expansion specifically in the colon after BMT. Allogeneic BMT recipients deficient in IL-17A also develop accelerated GVHD, suggesting MAIT cells likely regulate GVHD, at least in part, by the generation of this cytokine. Indeed, analysis of stool microbiota and colon tissue from IL-17A–/– and MR1–/– mice identified analogous shifts in microbiome operational taxonomic units (OTU) and mediators of barrier integrity that appear to represent pathways controlled by similar, IL-17A–dependent mechanisms. Thus, MAIT cells act to control barrier function to attenuate pathogenic T cell responses in the colon and, given their very high frequency in humans, likely represent an important population in clinical BMT.

Authors

Antiopi Varelias, Mark D. Bunting, Kate L. Ormerod, Motoko Koyama, Stuart D. Olver, Jasmin Straube, Rachel D. Kuns, Renee J. Robb, Andrea S. Henden, Leanne Cooper, Nancy Lachner, Kate H. Gartlan, Olivier Lantz, Lars Kjer-Nielsen, Jeffrey Y.W. Mak, David P. Fairlie, Andrew D. Clouston, James McCluskey, Jamie Rossjohn, Steven W. Lane, Philip Hugenholtz, Geoffrey R. Hill

×

Humanized mouse model of Rasmussen’s encephalitis supports the immune-mediated hypothesis
Hania Kebir, … , Alexandre Prat, Elie Haddad
Hania Kebir, … , Alexandre Prat, Elie Haddad
Published April 9, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97098.
View: Text | PDF

Humanized mouse model of Rasmussen’s encephalitis supports the immune-mediated hypothesis

  • Text
  • PDF
Abstract

Rasmussen’s encephalitis (RE) is a chronic inflammatory brain disorder that causes frequent seizures and unilateral hemispheric atrophy with progressive neurological deficits. Hemispherectomy remains the only treatment that leads to seizure freedom for this refractory epileptic syndrome. The absence of an animal model of disease has been a major obstacle hampering the development of effective therapies. Here, we describe an experimental mouse model that shares several clinical and pathological features with the human disease. Immunodeficient mice injected with peripheral blood mononuclear cells from RE patients and monitored by video electroencephalography developed severe seizures of cortical origin and showed intense astrogliosis and accumulation of human IFN-γ– and granzyme B–expressing T lymphocytes in the brain compared with mice injected with immune cells from control subjects. We also provide evidence for the efficacy of α4 integrin blockade, an approved therapy for the treatment of multiple sclerosis and Crohn’s disease, in reducing inflammatory markers associated with RE in the CNS. This model holds promise as a valuable tool for understanding the pathology of RE and for developing patient-tailored experimental therapeutics.

Authors

Hania Kebir, Lionel Carmant, François Fontaine, Kathie Béland, Ciprian M. Bosoi, Nathalie T. Sanon, Jorge I. Alvarez, Sébastien Desgent, Camille L. Pittet, David Hébert, Marie-Josée Langlois, Rose-Marie Rébillard, Dang K. Nguyen, Cécile Cieuta-Walti, Gregory L. Holmes, Howard P. Goodkin, John R. Mytinger, Mary B. Connolly, Alexandre Prat, Elie Haddad

×

ASK1/2 signaling promotes inflammation in a mouse model of neutrophilic dermatosis
Sarang Tartey, … , Amanda Burton, Thirumala-Devi Kanneganti
Sarang Tartey, … , Amanda Burton, Thirumala-Devi Kanneganti
Published April 9, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98446.
View: Text | PDF

ASK1/2 signaling promotes inflammation in a mouse model of neutrophilic dermatosis

  • Text
  • PDF
Abstract

Mice homozygous for the Tyr208Asn amino acid substitution in the carboxy terminus of Src homology region 2 (SH2) domain–containing phosphatase 1 (SHP-1) (referred to as Ptpn6spin mice) spontaneously develop a severe inflammatory disease resembling neutrophilic dermatosis in humans. Disease in Ptpn6spin mice is characterized by persistent footpad swelling and suppurative inflammation. Recently, in addition to IL-1α and IL-1R signaling, we demonstrated a pivotal role for several kinases such as SYK, RIPK1, and TAK1 in promoting inflammatory disease in Ptpn6spin mice. In order to identify new kinases involved in SHP-1–mediated inflammation, we took a genetic approach and discovered apoptosis signal–regulating kinases 1 and 2 (ASK1 and ASK2) as novel kinases regulating Ptpn6-mediated footpad inflammation. Double deletion of ASK1 and ASK2 abrogated cutaneous inflammatory disease in Ptpn6spin mice. This double deletion further rescued the splenomegaly and lymphomegaly caused by excessive neutrophil infiltration in Ptpn6spin mice. Mechanistically, ASK regulates Ptpn6spin-mediated disease by controlling proinflammatory signaling in the neutrophils. Collectively, the present study identifies SHP-1 and ASK signaling crosstalk as a critical regulator of IL-1α–driven inflammation and opens future avenues for finding novel drug targets to treat neutrophilic dermatosis in humans.

Authors

Sarang Tartey, Prajwal Gurung, Tejasvi Krishna Dasari, Amanda Burton, Thirumala-Devi Kanneganti

×

Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models
Santosh K. Panda, … , Rachel Ettinger, Yong-Jun Liu
Santosh K. Panda, … , Rachel Ettinger, Yong-Jun Liu
Published April 3, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97333.
View: Text | PDF

Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models

  • Text
  • PDF
Abstract

Uncontrolled secretion of type I IFN, as the result of endosomal TLR (i.e., TLR7 and TLR9) signaling in plasmacytoid DCs (pDCs), and abnormal production of autoantibodies by B cells are critical for systemic lupus erythematosus (SLE) pathogenesis. The importance of galectin-9 (Gal-9) in regulating various autoimmune diseases, including lupus, has been demonstrated. However, the precise mechanism by which Gal-9 mediates this effect remains unclear. Here, using spontaneous murine models of lupus (i.e., BXSB/MpJ and NZB/W F1 mice), we demonstrate that administration of Gal-9 results in reduced TLR7-mediated autoimmune manifestations. While investigating the mechanism underlying this phenomenon, we observed that Gal-9 inhibits the phenotypic maturation of pDCs and B cells and abrogates their ability to mount cytokine responses to TLR7/TLR9 ligands. Importantly, immunocomplex-mediated (IC-mediated) and neutrophil extracellular trap–mediated (NET-mediated) pDC activation was inhibited by Gal-9. Additionally, the mTOR/p70S6K pathway, which is recruited by both pDCs and B cells for TLR-mediated IFN secretion and autoantibody generation, respectively, was attenuated. Gal-9 was found to exert its inhibitory effect on both the cells by interacting with CD44.

Authors

Santosh K. Panda, Valeria Facchinetti, Elisaveta Voynova, Shino Hanabuchi, Jodi L. Karnell, Richard N. Hanna, Roland Kolbeck, Miguel A. Sanjuan, Rachel Ettinger, Yong-Jun Liu

×
  • ←
  • 1
  • 2
  • 3
  • …
  • 72
  • 73
  • →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology
Thumb showstopper liu morelli fig6a 600dpi ms 84577

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology
Thumb fig 2b ss

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Thumb thumb
Advertisement
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2018 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts